Reference: Chung JH, et al. (2003) Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J Biol Chem 278(31):28872-81

Reference Help

Abstract

There has been no previous indication that vacuolar ATPases (V-ATPases) require sphingolipids for function. Here we show, by using Saccharomyces cerevisiae sur4Delta and fen1Delta cells, that sphingolipids with a C26 acyl group are required for generating V1 domains with ATPase activity. Sphingolipids in sur4Delta cells contain C22 and C24 acyl groups instead of C26 acyl groups whereas about 30% of the sphingolipids in fen1Delta cells have C26 acyl groups and the rest have C22 and C24 acyl groups. sur4Delta cells have several phenotypes (vacuolar membrane ATPase, Vma-) that indicate a defect in the V-ATPase, and vacuoles purified from sur4Delta cells have little to no ATPase activity. These phenotypes are less pronounced in fen1Delta cells, consistent with the idea that the C26 acyl group in sphingolipids is necessary for V-ATPase activity. Other results show that the two V-ATPase domains, V1 and V0, are assembled and delivered to the vacuolar membrane in sur4Delta cells similar to wild-type cells. In vitro assembly studies show that V1 from sur4Delta cells associates with wild-type V0 but the complex lacks V-ATPase activity, indicating that V1 is defective. Reciprocal experiments with V0 from sur4Delta cells show that it is normal. We conclude that sphingolipids with a C26 acyl group are required for generating fully functional V1 domains.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Chung JH, Lester RL, Dickson RC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference