Take our Survey

Reference: Wolner B, et al. (2003) Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12(1):221-32

Reference Help

Abstract

Repair of DNA double-strand breaks (DSBs) by homologous recombination requires members of the RAD52 epistasis group. Here we use chromatin immunoprecipitation (ChIP) to examine the temporal order of recruitment of Rad51p, Rad52p, Rad54p, Rad55p, and RPA to a single, induced DSB in yeast. Our results suggest a sequential, interdependent assembly of Rad proteins adjacent to the DSB initiated by binding of Rad51p. ChIP time courses from various mutant strains and additional biochemical studies suggest that Rad52p, Rad55p, and Rad54p each help promote the formation and/or stabilization of the Rad51p nucleoprotein filament. We also find that all four Rad proteins associate with homologous donor sequences during strand invasion. These studies provide a near comprehensive view of the molecular events required for the in vivo assembly of a functional Rad51p presynaptic filament.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wolner B, van Komen S, Sung P, Peterson CL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference