Take our Survey

Reference: Sun X, et al. (2003) Complementary functions of the Saccharomyces cerevisiae Rad2 family nucleases in Okazaki fragment maturation, mutation avoidance, and chromosome stability. DNA Repair (Amst) 2(8):925-40

Reference Help

Abstract


Rad2 family nucleases, identified by sequence similarity within their catalytic domains, function in multiple pathways of DNA metabolism. Three members of the Saccharomyces cerevisiae Rad2 family, Rad2, Rad27, and exonuclease 1 (Exo1), exhibit both 5' exonuclease and flap endonuclease activities. Deletion of RAD27 results in defective Okazaki fragment maturation, DNA repair, and subsequent defects in mutation avoidance and chromosomal stability. However, strains lacking Rad27 are viable. The expression profile of EXO1 during the cell cycle is similar to that of RAD27 and other genes encoding proteins that function in DNA replication and repair, suggesting Exo1 may function as a back up nuclease for Rad27 in DNA replication. We show that overexpression of EXO1 suppresses multiple rad27 null mutation-associated phenotypes derived from DNA replication defects, including temperature sensitivity, Okazaki fragment accumulation, the rate of minichromosome loss, and an elevated mutation frequency. While generally similar findings were observed with RAD2, overexpression of RAD2, but not EXO1, suppressed the MMS sensitivity of the rad27 null mutant cells. This suggests that Rad2 can uniquely complement Rad27 in base excision repair (BER). Furthermore, Rad2 and Exo1 complemented the mutator phenotypes and cell cycle defects of rad27 mutant strains to differing extents, suggesting distinct in vivo nucleic acid substrates.

Reference Type
Journal Article
Authors
Sun X, Thrower D, Qiu J, Wu P, Zheng L, Zhou M, Bachant J, Wilson DM, Shen B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference