Reference: Marvin ME, et al. (2003) The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology (Reading) 149(Pt 6):1461-1474

Reference Help

Abstract


Copper and iron uptake in Saccharomyces cerevisiae are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in Candida albicans. The authors have identified a C. albicans gene that is able to rescue a S. cerevisiae ctr1/ctr3-null mutant defective in high-affinity copper uptake. The 756 bp ORF, designated CaCTR1, encodes a 251 amino acid protein with a molecular mass of 27.8 kDa. Comparisons between the deduced amino acid sequence of the C. albicans Ctr1p and S. cerevisiae Ctr1p indicated that they share 39.6 % similarity and 33.0 % identity over their entire length. Within the predicted protein product of CaCTR1 there are putative transmembrane regions and sequences that resemble copper-binding motifs. The promoter region of CaCTR1 contains four sequences with significant identity to S. cerevisiae copper response elements. CaCTR1 is transcriptionally regulated in S. cerevisiae in response to copper availability by the copper-sensing transactivator Mac1p. Transcription of CaCTR1 in C. albicans is also regulated in a copper-responsive manner. This raises the possibility that CaCTR1 may be regulated in C. albicans by a Mac1p-like transactivator. A C. albicans ctr1-null mutant displays phenotypes consistent with the lack of copper uptake including growth defects in low-copper and low-iron conditions, a respiratory deficiency and sensitivity to oxidative stress. Furthermore, changes in morphology were observed in the C. albicans ctr1-null mutant. It is proposed that CaCTR1 facilitates transport of copper into the cell.

Reference Type
Comparative Study | Journal Article
Authors
Marvin ME, Williams PH, Cashmore AM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference