Reference: Bolte M, et al. (2003) Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae. Microbiology 149(Pt 5):1205-16

Reference Help

Abstract


Proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for the progression through mitosis. APC/C is a highly conserved ubiquitin ligase whose activity is regulated during the cell cycle by various factors, including spindle checkpoint components and protein kinases. The cAMP-dependent protein kinase (PKA) was identified as negative regulator of APC/C in yeast and mammalian cells. In the yeast Saccharomyces cerevisiae, PKA activity is induced upon glucose addition or by activated Ras proteins. This study shows that glucose and the activated Ras2(Val19) protein synergistically inhibit APC/C function via the cAMP/PKA pathway in yeast. Remarkably, Ras2 proteins defective in the interaction with adenylate cyclase fail to influence APC/C, implying that its function is regulated exclusively by PKA, but not by alternative Ras pathways. Furthermore, it is shown that the three PKAs in yeast, Tpk1, Tpk2 and Tpk3, have redundant functions in regulating APC/C in response to glucose medium. Single or double deletions of TPK genes did not prevent inhibition of APC/C, suggesting that each of the Tpk proteins can take over this function. However, Tpk2 seems to inhibit APC/C function more efficiently than Tpk1 and Tpk3. Finally, evidence is provided that Cdc20 is involved in APC/C regulation by the cAMP/PKA pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bolte M, Dieckhoff P, Krause C, Braus GH, Irniger S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference