Reference: Serikawa KA, et al. (2003) The transcriptome and its translation during recovery from cell cycle arrest in Saccharomyces cerevisiae. Mol Cell Proteomics 2(3):191-204

Reference Help

Abstract


Complete genome sequences together with high throughput technologies have made comprehensive characterizations of gene expression patterns possible. While genome-wide measurement of mRNA levels was one of the first applications of these advances, other important aspects of gene expression are also amenable to a genomic approach, for example, the translation of message into protein. Earlier we reported a high throughput technology for simultaneously studying mRNA level and translation, which we termed translation state array analysis, or TSAA. The current studies test the proposition that TSAA can identify novel instances of translation regulation at the genome-wide level. As a biological model, cultures of Saccharomyces cerevisiae were cell cycle-arrested using either alpha-factor or the temperature-sensitive cdc15-2 allele. Forty-eight mRNAs were found to change significantly in translation state following release from alpha-factor arrest, including genes involved in pheromone response and cell cycle arrest such as BAR1, SST2, and FAR1. After the shift of the cdc15-2 strain from 37 degrees C to 25 degrees C, 54 mRNAs were altered in translation state, including the products of the stress genes HSP82, HSC82, and SSA2. Thus, regulation at the translational level seems to play a significant role in the response of yeast cells to external physical or biological cues. In contrast, surprisingly few genes were found to be translationally controlled as cells progressed through the cell cycle. Additional refinements of TSAA should allow characterization of both transcriptional and translational regulatory networks on a genomic scale, providing an additional layer of information that can be integrated into models of system biology and function.

Reference Type
Journal Article
Authors
Serikawa KA, Xu XL, MacKay VL, Law GL, Zong Q, Zhao LP, Bumgarner R, Morris DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference