Take our Survey

Reference: Williams EH and Fox TD (2003) Antagonistic signals within the COX2 mRNA coding sequence control its translation in Saccharomyces cerevisiae mitochondria. RNA 9(4):419-31

Reference Help

Abstract

Translation of the mitochondrially coded COX2 mRNA within the organelle in yeast produces the precursor of Cox2p (pre-Cox2p), which is processed and assembled into cytochrome c oxidase. The mRNA sequence of the first 14 COX2 codons, specifying the pre-Cox2p leader peptide, was previously shown to contain a positively acting element required for translation of a mitochondrial reporter gene, ARG8(m), fused to the 91st codon of COX2. Here we show that three relatively short sequences within the COX2 mRNA coding sequence, or structures they form in vivo, inhibit translation of the reporter in the absence of the positive element. One negative element was localized within codons 15 to 25 and shown to function at the level of the mRNA sequence, whereas two others are within predicted stem-loop structures formed by codons 22-44 and by codons 46-74. All three of these inhibitory elements are antagonized in a sequence-specific manner by reintroduction of the upstream positive-acting sequence. These interactions appear to be independent of 5'- and 3'-untranslated leader sequences, as they are also observed when the same reporter constructs are expressed from the COX3 locus. Overexpression of MRS2, which encodes a mitochondrial magnesium carrier, partially suppresses translational inhibition by each isolated negatively acting element, but does not suppress them in combination. We hypothesize that interplay among these signals during translation in vivo may ensure proper timing of pre-Cox2p synthesis and assembly into cytochrome c oxidase.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Williams EH, Fox TD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference