Reference: Biswas SB, et al. (2003) Subunit interactions in the assembly of Saccharomyces cerevisiae DNA polymerase alpha. Nucleic Acids Res 31(8):2056-65

Reference Help

Abstract

Eukaryotic DNA polymerase (pol) alpha is a complex of four subunits. The subunits in the yeast Saccharomyces cerevisiae are: 167, 79, 62 and 48 kDa polypeptides. The p79 subunit has no known enzymatic functions, but it is essential for growth and chromosomal DNA replication. We have analyzed the interaction between the subunits of yeast pol alpha, particularly p167 and p79, using a yeast two-hybrid screen and deletion analysis. We have identified the interaction sites in each of these two subunits leading to p167.p79 complex formation, and correlated our results with the available genetic data. A detailed two-hybrid analysis, using the p79 gene as the bait and a yeast genomic DNA library, identified two independent groups of positive clones. One group that displayed strong positive interaction (delta1) with p79 represented a fusion of the p167 open reading frame at 3502 bp (Ile1168), and the second group, displaying weak positive interaction (delta2) with p79, had a fusion at 3697 bp (Asn1233) with the DNA-binding domain of the yeast Gal4 transcription factor. A detailed deletion analysis of the downstream region indicated the existence of two subdomains that interact with p79. Subdomain I encompasses a 65 amino acid segment between Ile1168 and Phe1232, and subdomain II is a 25 amino acid segment between Glu1259 and Leu1283. Deletion and two-hybrid interaction analysis of the p79 subunit of pol alpha revealed a complementary region with two subdomains: a 67 amino acid segment between Asn189 and Gln255 (I) and a 68 amino acid segment between Glu256 and Met323 (II). The p79 subdomains I and II appeared to interact with the p167 subdomains I and II, respectively. Analysis of interaction between p62 and various deletion clones of p167 did not result in an unambiguous and stable positive interaction in the two-hybrid screen between these two subunits. A strong interaction between p167 and p62 would probably require the presence of either p79 or p48 in the complex.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Biswas SB, Khopde SM, Zhu Fx F, Biswas EE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference