Reference: Kobayashi SD and Nagiec MM (2003) Ceramide/long-chain base phosphate rheostat in Saccharomyces cerevisiae: regulation of ceramide synthesis by Elo3p and Cka2p. Eukaryot Cell 2(2):284-94

Reference Help

Abstract


Sphingolipid precursors, namely, ceramide and long-chain base phosphates (LCBPs), are important growth regulators with often opposite effects on mammalian cells. A set of enzymes that regulate the levels of these precursors, referred to as a ceramide/LCBP rheostat, is conserved in all eukaryotes. In order to gain further insight into the function of the rheostat in Saccharomyces cerevisiae, we searched for mutants that are synthetically lethal with a deletion of the LCB3 gene encoding LCBP phosphatase. In addition to acquiring expected mutants lacking the LCBP lyase, the screen revealed elo3 (sur4) mutants that were defective in fatty acid elongation and cka2 mutants lacking the alpha' subunit of the protein kinase CK2 (casein kinase). Both mutations affected the in vivo activity of the acyl coenzyme A (acyl-CoA)-dependent and fumonisin B(1)-sensitive ceramide synthase (CS). The Elo3 protein is necessary for synthesis of C(26)-CoA, which in wild-type yeast is a source of C(26) fatty acyls found in the ceramide moieties of all sphingolipids. In the in vitro assay, CS had a strong preference for acyl-CoAs containing longer acyl chains. This finding suggests that a block in the formation of C(26)-CoA in yeast may cause a reduction in the conversion of LCBs into ceramides and lead to an overaccumulation of LCBPs that is lethal in strains lacking the Lcb3 phosphatase. In fact, elo3 mutants were found to accumulate high levels of LCBs and LCBPs. The cka2 mutants, on the other hand, exhibited only 25 to 30% of the in vitro CS activity found in wild-type membranes, indicating that the alpha' subunit of CK2 kinase is necessary for full activation of CS. The cka2 mutants also accumulated high levels of LCBs and had elevated levels of LCBPs. In addition, both the elo3 and cka2 mutants showed increased sensitivity to the CS inhibitors australifungin and fumonisin B(1). Together, our data demonstrate that the levels of LCBPs in yeast are regulated by the rate of ceramide synthesis, which depends on CK2 kinase activity and is also strongly affected by the supply of C(26)-CoA. This is the first evidence indicating the involvement of protein kinase in the regulation of de novo sphingolipid synthesis in any organism.

Reference Type
Journal Article
Authors
Kobayashi SD, Nagiec MM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference