Reference: Ubukata T, et al. (2003) Cleavage, but not read-through, stimulation activity is responsible for three biologic functions of transcription elongation factor S-II. J Biol Chem 278(10):8580-5

Reference Help

Abstract


Transcription elongation factor S-II stimulates cleavage of nascent transcripts generated by RNA polymerase II stalled at transcription arrest sites. In vitro experiments have shown that this action promotes RNA polymerase II to read through these transcription arrest sites. This S-II-mediated cleavage is thought to be necessary, but not sufficient, to promote read-through in the in vitro systems. Therefore, Saccharomyces cerevisiae strains expressing S-II mutant proteins with different in vitro activities were used to study both the cleavage and the read-through stimulation activities of S-II to determine which S-II functions are responsible for its biologic functions. Strains expressing mutant S-II proteins active in both cleavage and read-through stimulation were as resistant as wild type strains to 6-azauracil and mycophenolic acid. 6-Azauracil also induced IMD2 gene expression in both these mutant strains and the wild type. Furthermore, strains having a genotype consisting of one of these S-II mutations and the spt4 null mutation grew as well as the spt4 null mutant at 37 degrees C, a restrictive temperature for a strain bearing double null mutations of spt4 and S-II. In contrast, strains bearing S-II mutations defective in both cleavage and read-through stimulation had phenotypes similar to those of an S-II null mutant. However, one strain expressing a mutant S-II protein active only in cleavage stimulation had a phenotype similar to that of the wild type strain. These results suggest that cleavage, but not read-through, stimulation activity is responsible for all three biologic functions of S-II (i.e. suppression of 6-azauracil sensitivity, induction of the IMD2 gene, and suppression of temperature sensitivity of spt4 null mutant).

Reference Type
Journal Article
Authors
Ubukata T, Shimizu T, Adachi N, Sekimizu K, Nakanishi T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference