Take our Survey

Reference: Hieronymus H and Silver PA (2003) Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 33(2):155-61

Reference Help

Abstract


Nuclear export of mRNA is mediated by a complex machinery of RNA-binding proteins that recognizes and routes mRNAs through a messenger ribonucleoprotein (mRNP) network. The full spectrum of mRNA cargoes for any dedicated mRNA export factor is unknown. We identified the mRNAs that bind two conserved yeast mRNA export factors, Yra1 (refs. 1-5) and Mex67 (refs. 6,7), on a genome-wide scale and determined their level of binding. Yra1 and Mex67 bind approximately 1,000 and 1,150 mRNAs, respectively, corresponding to almost 20% of the yeast genome and roughly 36% of all transcriptional events each. The binding level of Yra1 targets is related to their transcriptional frequency, but that of Mex67 targets is not. Yra1-bound transcripts are enriched in mRNAs that are regulated by a number of transcription factors. Yra1- and Mex67-bound populations also show enrichment of mRNAs encoding distinct functional classes of proteins, some of which are regulated by these transcription factors. We determined that one such transcription factor, Abf1 (refs. 8-10), associates with Yra1. These results indicate a previously unidentified specificity of mRNA export factors, which coordinates the export of transcriptionally co-regulated, functional classes of transcripts, perhaps through interactions with the transcriptional machinery.

Reference Type
Journal Article
Authors
Hieronymus H, Silver PA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference