Take our Survey

Reference: Setty SR, et al. (2003) Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol 13(5):401-4

Reference Help

Abstract

Golgins are Golgi-localized proteins present in all molecularly characterized eukaryotes that function in Golgi transport and maintenance of Golgi structure. Some peripheral membrane Golgins, including the yeast Imh1 protein, contain the recently described GRIP domain that can independently mediate Golgi localization by an unknown mechanism. To identify candidate Golgi receptors for GRIP domain proteins, a collection of Saccharomyces cerevisiae deletion mutants was visually screened by using yeast, mouse, and human GFP-GRIP domain fusion proteins for defects in Golgi localization. GFP-GRIP reporters were localized to the cytosol in cells lacking either of two ARF-like (ARL) GTPases, Arl1p and Arl3p. In vitro binding experiments demonstrated that activated Arl1p-GTP binds specifically and directly to the Imh1p GRIP domain. Arl1p colocalized with Imh1p-GRIP at the Golgi, and Golgi localization of Arl1p was regulated by the GTPase cycle of Arl3p. These results suggest a cascade in which the GTPase cycle of Arl3p regulates Golgi localization of Arl1p, which in turn binds to the GRIP domain of Imh1p and recruits it to the Golgi. The similar requirements for localization of GRIP domains from yeast, mouse, and human when expressed in yeast, and the presence of Arl1p and Arl3p homologs in these species, suggest that this is an evolutionarily conserved mechanism.

Reference Type
Journal Article
Authors
Setty SR, Shin ME, Yoshino A, Marks MS, Burd CG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference