Reference: Giots F, et al. (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47(4):1163-81

Reference Help

Abstract


Yeast cells starved for inorganic phosphate on a glucose-containing medium arrest growth and enter the resting phase G0. We show that re-addition of phosphate rapidly affects well known protein kinase A targets: trehalase activation, trehalose mobilization, loss of heat resistance, repression of STRE-controlled genes and induction of ribosomal protein genes. Phosphate-induced activation of trehalase is independent of protein synthesis and of an increase in ATP. It is dependent on the presence of glucose, which can be detected independently by the G-protein coupled receptor Gpr1 and by the glucose-phosphorylation dependent system. Addition of phosphate does not trigger a cAMP signal. Despite this, lowering of protein kinase A activity by mutations in the TPK genes strongly reduces trehalase activation. Inactivation of phosphate transport by deletion of PHO84 abolishes phosphate signalling at standard concentrations, arguing against the existence of a transport-independent receptor. The non-metabolizable phosphate analogue arsenate also triggered signalling. Constitutive expression of the Pho84, Pho87, Pho89, Pho90 and Pho91 phosphate carriers indicated pronounced differences in their transport and signalling capacities in phosphate-starved cells. Pho90 and Pho91 sustained highest phosphate transport but did not sustain trehalase activation. Pho84 sustained both transport and rapid signalling, whereas Pho87 was poor in transport but positive for signalling. Pho89 displayed very low phosphate transport and was negative for signalling. Although the results confirmed that rapid signalling is independent of growth recovery, long-term mobilization of trehalose was much better correlated with growth recovery than with trehalase activation. These results demonstrate that phosphate acts as a nutrient signal for activation of the protein kinase A pathway in yeast in a glucose-dependent way and they indicate that the Pho84 and Pho87 carriers act as specific phosphate sensors for rapid phosphate signalling.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Giots F, Donaton MC, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference