Reference: Erkine AM and Gross DS (2003) Dynamic chromatin alterations triggered by natural and synthetic activation domains. J Biol Chem 278(10):7755-64

Reference Help

Abstract


The activation domains (ADs) of transcription activators recruit a multiplicity of enzymatic activities to gene promoters. The mechanisms by which such recruitment takes place are not well understood. Using chromatin immunoprecipitation, we demonstrate dynamic alterations in the abundance of histones H2A, H3, and H4 at promoters of genes regulated by the HSF and Gal4 activators of Saccharomyces cerevisiae. Transcriptional activation of these genes, particularly those regulated by HSF, is accompanied by a significant reduction in both acetylated and unacetylated histones at promoters and may involve the transient displacement of histone octamers. To gain insight into the function of ADs, we conducteda genetic screen to identify polypeptides that could substitute for the 340-residue C-terminal activator of HSF and rescue the temperature sensitivity caused by its deletion. We found that the ts(-) phenotype of HSF(1-493) could be complemented by peptides as short as 11 amino acids. Such peptides are enriched in acidic and hydrophobic residues, and exhibit both trans-activating and chromatin-modifying activities when fused to the Gal4 DNA-binding domain. We also demonstrate that a previously identified 14-amino acid histone H3-binding module of human CTF1/NF1, which is similar to synthetic ADs, can substitute for the HSF C-terminal activator in conferring temperature resistance and can mediate the modification of promoter chromatin structure. Possible mechanisms of AD function, including one involving direct interactions with histones, are discussed.

Reference Type
Journal Article
Authors
Erkine AM, Gross DS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference