Reference: Davey MJ, et al. (2003) Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem 278(7):4491-9

Reference Help

Abstract


The Mcm2-7p heterohexamer is the presumed replicative helicase in eukaryotic cells. Each of the six subunits is required for replication. We have purified the six Saccharomyces cerevisiae MCM proteins as recombinant proteins in Escherichia coli and have reconstituted the Mcm2-7p complex from individual subunits. Study of MCM ATPase activity demonstrates that no MCM protein hydrolyzes ATP efficiently. ATP hydrolysis requires a combination of two MCM proteins. The fifteen possible pairwise mixtures of MCM proteins yield only three pairs of MCM proteins that produce ATPase activity. Study of the Mcm3/7p ATPase shows that an essential arginine in Mcm3p is required for hydrolysis of the ATP bound to Mcm7p. Study of the pairwise interactions between MCM proteins connects the remaining MCM proteins to the Mcm3/7p pair. The data predict which subunits in the ATPase pairs bind the ATP that is hydrolyzed and indicate the arrangement of subunits in the Mcm2-7p heterohexamer.

Reference Type
Authors
Davey MJ, Indiani C, O'Donnell M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference