Reference: Wang CC, et al. (2003) Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42(6):1646-51

Reference Help

Abstract


Previous studies showed that yeast VAS1 encodes both the cytoplasmic and mitochondrial forms of valyl-tRNA synthetase (ValRS), using alternative transcription and translation. The ValRS isoforms have identical polypeptide sequences, except for a 46-amino acid leader peptide that functions as a mitochondrial targeting signal. Although the two forms of the enzyme exhibit indistinguishable tRNA specificities in vitro, they cannot substitute for each other in vivo because of their different localizations. Here we show that the 46-residue leader sequence can be divided into two nonoverlapping peptides, each of which retains the ability to target the enzyme into mitochondria. The engineered proteins (with truncated leader sequences) are dual-targeted, rescuing both the cytoplasmic and mitochondrial defects of a vas1 knockout strain. Thus, in addition to alternative splicing and alternative translation initiation as mechanisms by which a single gene can encode cytoplasmic and mitochondrial activities, the inherent characteristics of a single polypeptide may enable it to be distributed simultaneously between two cellular compartments. This mechanism may explain how certain other single genes in Saccharomyces cerevisiae provide dual functions.

Reference Type
Journal Article
Authors
Wang CC, Chang KJ, Tang HL, Hsieh CJ, Schimmel P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference