Take our Survey

Reference: Scott-Drew S, et al. (2002) DNA plasmid transmission in yeast is associated with specific sub-nuclear localisation during cell division. Cell Biol Int 26(5):393-405

Reference Help

Abstract

Circular plasmids in yeast carrying only an origin of DNA replication (ARS) exhibit maternal inheritance bias (MIB) and are poorly transmitted from mother to daughter cell during division. A variety of different sequences that overcome MIB have been described, including centromeric sequences (CEN), telomere-associated repeats, silencer sequences and a specific system encoded by the endogenous 2 micron circle plasmid requiring the cis-acting locus STB and the proteins Rep1 and Rep2. In each case, DNA segregation between mother and daughter cells is dependent on DNA-protein interactions. Using plasmids carrying multiple copies of a lac repressor binding sequence, we have localised DNA molecules in the yeast nucleus using a green fluorescent protein (GFP)-lac repressor fusion protein. We compared GFP localised plasmids carrying a centromere sequence with plasmids based on 2 micron circle carrying or lacking the STB sequences required for their segregation. We show that GFP localised plasmid carrying the complete STB locus co-localises with the plasmid proteins Rep1 and Rep2 to discrete chromatin sites. These sites are distinct from both the telomeres and from sites of cohesin binding. Deletion of the region of STB essential for the stability of the plasmid, leads to a loss of plasmid association with chromatin, relocalisation of plasmids towards the nuclear periphery, and a decrease in the Rep1 protein associated with the plasmid. We conclude that specific plasmid localisation is likely to be important in the overcoming of MIB in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Scott-Drew S, Wong CM, Murray JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference