Reference: Wang ZX, et al. (2002) Cloning, sequencing and characterization of a gene encoding dihydroxyacetone kinase from Zygosaccharomyces rouxii NRRL2547. Yeast 19(16):1447-58

Reference Help

Abstract


The dihydroxyacetone pathway, an alternative pathway for the dissimilation of glycerol via reduction by glycerol dehydrogenase and subsequent phosphorylation by dihydroxyacetone (DHA) kinase, is activated in the yeasts Saccharomyces cerevisiae and Zygosaccharomyces rouxii during osmotic stress. In experiments aimed at investigating the physiological function of the DHA pathway in Z. rouxii, a typical osmotolerant yeast, we cloned and characterized a DAK gene encoding dihydroxyacetone kinase from Z. rouxii NRRL 2547. Sequence analysis revealed a 1761 bp open reading frame, encoding a peptide composed of 587 deduced amino acids with the predicted molecular weight of 61 664 Da. As the amino acid sequence was most closely homologous (68% identity) to the S. cerevisiae Dak1p, we named the gene and protein ZrDAK1 and ZrDak1p, respectively. A putative ATP binding site was also found but no consensus element associated with osmoregulation was found in the upstream region of the ZrDAK1 gene. The ZrDAK1 gene complemented a S. cerevisiae W303-1A dak1delta dak2 delta strain by improving the growth of the mutant on 50 mmol/l dihydroxyacetone and by increasing the tolerance to dihydroxyacetone in a medium containing 5% sodium chloride, suggesting that it is a functional homologue of the S. cerevisiae DAK1. However, expression of the ZrDAK1 gene in the S. cerevisiae dak1delta dak2 delta strain had no significant effect on glycerol levels during osmotic stress. The ZrDAK1 sequence has been deposited in the public data bases under Accession No. AJ294719; regions upstream and downstream of ZrDAK1are deposited as Accession Nos AJ294739 and AJ294720, respectively.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Wang ZX, Kayingo G, Blomberg A, Prior BA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference