Reference: Jona G, et al. (2002) Mutations in the RING domain of TFB3, a subunit of yeast transcription factor IIH, reveal a role in cell cycle progression. J Biol Chem 277(42):39409-16

Reference Help

Abstract


The RNA polymerase II general transcription factor TFIIH is composed of 9 known subunits and possesses DNA helicase and protein kinase activities. The kinase subunits of TFIIH in animal cells, Cdk7, cyclin H, and MAT1, were independently isolated as an activity termed CAK (Cdk-activating kinase), which phosphorylates and activates cell cycle kinases. However, CAK activity of TFIIH subunits could not be demonstrated in budding yeast. TFB3, the 38-kDa subunit of yeast TFIIH, is the homolog of mammalian MAT1. By random mutagenesis we have isolated a temperature-sensitive mutation in the conserved RING domain. The mutant Tfb3 protein associates less efficiently with the kinase moiety of TFIIH than the wild type protein. In contrast to lethal mutants in other subunits of TFIIH, this mutation does not impair general transcription. Transcription of CLB2, and possibly other genes, is reduced in the mutant. At the restrictive temperature, the cells display a defect in cell cycle progression, which is manifest at more than one phase of the cycle. To conclude, in the present study we bring another demonstration of the multifunctional nature of TFIIH.

Reference Type
Journal Article
Authors
Jona G, Livi LL, Gileadi O
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference