Take our Survey

Reference: Sharma CB, et al. (2001) Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol Chem 382(2):321-8

Reference Help

Abstract


The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl pyrophosphate. Whereas early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9GlcNAc2-PP-Dol on the lumenal side use Dol-P-Man. We have investigated these later stages in vitro using a detergent-solubilized enzyme extract from yeast membranes. Mannosyltransfer from Dol-P-Man to [3H]Man5GlcNAc2-PP-Dol with formation of all intermediates up to Man9GlcNAc2-PP-Dol occured in a rapid, time- and protein-dependent fashion. We find that the initial reaction from Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol is independent of metal ions, but further elongations need Mn2+ that can be partly replaced by Mg2+ or Ca2+. Zn2+ or Cd2+ ions were found to inhibit formation of Man(7-9)GlcNAc2-PP-Dol, but do not affect synthesis of Man6GlcNAc2-PP-Dol. Extension did not occur when the acceptor was added as a free Man5GlcNAc2 oligosaccharide or when GDP-Man was used as mannosyl donor. The alg3 mutant was described to accumulate Man5GlcNAc2-PP-Dol. We expressed a functional active HA-epitope tagged ALG3 fusion and succeeded to selectively immunoprecipitate the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase activity from the other enzymes of the detergent extract involved in the subsequent mannosylation reactions. This demonstrates that Alg3p represents the mannosyltransferase itself and not an accessory protein involved in the reaction.

Reference Type
Journal Article
Authors
Sharma CB, Knauer R, Lehle L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference