Take our Survey

Reference: Jorgensen P, et al. (2002) High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162(3):1091-9

Reference Help

Abstract


We present a method for high-resolution genetic mapping that takes advantage of the ordered set of viable gene deletion mutants, which form a set of colinear markers covering almost every centimorgan of the Saccharomyces cerevisiae genome, and of the synthetic genetic array (SGA) system, which automates the construction of double mutants formed by mating and meiotic recombination. The Cbk1 kinase signaling pathway, which consists minimally of CBK1, MOB2, KIC1, HYM1, and TAO3 (PAG1), controls polarized morphogenesis and activation of the Ace2 transcription factor. Deletion mutations in the Cbk1 pathway genes are tolerated differently by common laboratory strains of S. cerevisiae, being viable in the W303 background but dead in the S288C background. Genetic analysis indicated that the lethality of Cbk1 pathway deletions in the S288C background was suppressed by a single allele specific to the W303 background. SGA mapping (SGAM) was used to locate this W303-specific suppressor to the SSD1 locus, which contains a known polymorphism that appears to compromise SSD1 function. This procedure should map any mutation, dominant or recessive, whose phenotype is epistatic to wild type, that is, a phenotype that can be scored from a mixed population of cells obtained by germination of both mutant and wild-type spores. In principle, SGAM should be applicable to the analysis of multigenic traits. Large-scale construction of ordered mutations in other model organisms would broaden the application of this approach.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jorgensen P, Nelson B, Robinson MD, Chen Y, Andrews B, Tyers M, Boone C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference