Take our Survey

Reference: Kohler T, et al. (2002) Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell 1(5):673-86

Reference Help

Abstract


In Saccharomyces cerevisiae, the transcription factors Tec1p and Ste12p are required for haploid invasive and diploid pseudohyphal growth. Tec1p and Ste12p have been postulated to regulate these developmental processes primarily by cooperative binding to filamentous and invasion-responsive elements (FREs), which are combined enhancer elements that consist of a Tec1p-binding site (TCS) and an Stel2p-binding site (PRE). They are present in the promoter regions of target genes, e.g., FLO11. Here, we show that Tec1p efficiently activates target gene expression and cellular development in the absence of Stel2p. We further demonstrate that TCS elements alone are sufficient to mediate Tec1p-driven gene expression by a mechanism termed TCS control that is operative even when Stel2p is absent. Mutational analysis of TEC1 revealed that TCS control, FLO11 expression, and haploid invasive growth require the C terminus of Tec1p. In contrast, the Ste12p-dependent FRE control mechanism is sufficiently executed by the N-terminal portion of Tec1p, which contains the TEA/ATTS DNA-binding domain. Our study suggests that regulation of haploid invasive and diploid pseudohyphal growth by Stel2p and Tec1p is not only executed by combinatorial control but involves additional control mechanisms in which Stel2p activates TEC1 expression via clustered PREs and where Tec1p regulates expression of target genes, e.g., FLO11, by TCS control.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kohler T, Wesche S, Taheri N, Braus GH, Mosch HU
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference