Take our Survey

Reference: Belli G, et al. (2002) Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J Biol Chem 277(40):37590-6

Reference Help

Abstract

Grx5 defines a family of yeast monothiol glutaredoxins that also includes Grx3 and Grx4. All three proteins display significant sequence homology with proteins found from bacteria to humans. Grx5 is involved in iron/sulfur cluster assembly at the mitochondria, but the function of Grx3 and Grx4 is unknown. Three-dimensional modeling based on known dithiol glutaredoxin structures predicted a thioredoxin fold structure for Grx5. Positionally conserved amino acids in this glutaredoxin family were replaced in Grx5, and the effect on the biological function of the protein has been tested. For all changes studied, there was a correlation between the effects on several different phenotypes: sensitivity to oxidants, constitutive protein oxidation, ability for respiratory growth, auxotrophy for a number of amino acids, and iron accumulation. Cys(60) and Gly(61) are essential for Grx5 function, whereas other single or double substitutions in the same region had no phenotypic effects. Gly(115) and Gly(116) could be important for the formation of a glutathione cleft on the Grx5 surface, in contrast to adjacent Cys(117). Substitution of Phe(50) alters the beta-sheet in the thioredoxin fold structure and inhibits Grx5 function. None of the substitutions tested affect the structure at a significant enough level to reduce protein stability.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Belli G, Polaina J, Tamarit J, De La Torre MA, Rodriguez-Manzaneque MT, Ros J, Herrero E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference