Take our Survey

Reference: Marin S, et al. (2002) Promoter-specific inhibition of transcription by daunorubicin in Saccharomyces cerevisiae. Biochem J 368(Pt 1):131-6

Reference Help

Abstract


Several anti-tumour drugs exert some of their cytotoxic effects by direct binding to DNA, thus inhibiting the transcription of certain genes. We analysed the influence of the anti-tumour antibiotic daunorubicin on the transcription of different genes in vivo using the budding yeast Saccharomyces cerevisiae. Daunorubicin only affected wild-type yeast strains at very high concentrations; however, erg6 mutant strains (but not pdr1, pdr3 or pdr5 strains) were sensitive to daunorubicin at low micromolar concentrations. In Delta erg6 strains, daunorubicin inhibited the galactose-induced transcription by Gal4p in a specific manner, since the transcription of identical reporters driven by other activators (either constitutive or inducible) was not inhibited. The drug concentrations at which Gal4p function was inhibited did not affect cell growth or viability. Furthermore, daunorubicin inhibited the growth in galactose and the transcriptional induction of resident Gal4p-driven genes upon galactose addition, two processes absolutely dependent on Gal4p function. We propose that daunorubicin and some transcription factors compete for DNA sequences encompassing CpG steps, and that this is the main determinant of the effects of the drug on transcription in vivo. Our approach may foster the development of anti-tumour drugs with more specific mechanisms of action.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Marin S, Mansilla S, Garcia-Reyero N, Rojas M, Portugal J, Pina B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference