Take our Survey

Reference: Adachi N, et al. (2002) A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3. J Biol Chem 277(38):35688-95

Reference Help

Abstract


Post-translational modification of histones enables dynamic regulation of chromatin structure in eukaryotes. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) modify the N-terminal tails of histones by adding or removing acetyl groups to specific lysine residues. A particular pair of HAT (Esa1) and HDAC (Rpd3) is proposed to modify the same lysine residue in vitro and in vivo. Thus, HAT and HDAC might have similar structural and functional motifs. Here we show that HAT (Esa1 family) and HDAC (Rpd3 family) have similar amino acid stretches in the primary structures through evolution. We refer to this region as the "ER (Esa1-Rpd3) motif." In the tertiary structure of Esa1, the ER motif is located near the active center. In Rpd3, for which the tertiary structure remains unclear, we demonstrate that the ER motif contains the same secondary structure as found in Esa1 by circular dichroism analysis. We did alanine-scanning mutagenesis and found that the ER motif regions of Esa1 or Rpd3 are required for HAT activity of Esa1 or HDAC activity of Rpd3, respectively. Our discovery of the ER motif present in the pair of enzymes (HAT and HDAC) indicates that HAT and HDAC have common structural bases, although they catalyze the reaction with opposite functions.

Reference Type
Journal Article
Authors
Adachi N, Kimura A, Horikoshi M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference