Reference: Carotti C, et al. (2002) Maintenance of cell integrity in the gas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast 19(13):1113-24

Reference Help

Abstract


Chitin synthase III is essential for the increase in chitin level and for cell integrity in cells lacking Gas1p, a beta(1,3)-glucanosyltransferase. In order to discover whether the upregulation of chitin synthesis proceeds through the canonical transport and activation pathway of Chs3p or through an alternative one, here we studied the effects of the inactivation of the GAS1 and CHS4-5-6-7 genes. All the double-null mutants showed a temperature-sensitive cell lysis phenotype that could be suppressed by the presence of an osmotic stabilizer. In liquid YEPD at 30 degrees C, chs4Delta gas1Delta, chs5Delta gas1Delta, chs6Deltagas1Delta and chs7Deltagas1Delta mutants were unable to grow, whereas they grew very slowly in minimal medium and showed low viability. High osmolarity suppressed the defective phenotype and restored growth. In chs4 gas1, chs5 gas1 and chs7 gas1, chitin levels did not increase and were reduced to only 10%, while in chs6 gas1 the value of gas1 was reduced to 20-40%. To investigate at which level the upregulation of chitin synthesis could occur, mRNA levels were monitored. The expression of CHS4-5-6-7 did not change significantly in gas1Delta. In strains expressing HA-tagged forms, the localization of Chs3p and Chs5p was examined. In the gas1 mutant the fluorescence pattern was affected and the proteins appeared abnormally present in the bud. The results indicate that: (a) the function of the CHS4-7 genes is required for chitin hyperaccumulation in gas1 mutant and for cell integrity; (b) homologous genes do not replace their function; (c) the regulation of CHS4-7 genes does not occur at transcriptional level. Control of the position of chitin synthesis could be important in protecting the bud from lysis. Copyright 2002 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Carotti C, Ferrario L, Roncero C, Valdivieso MH, Duran A, Popolo L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference