Reference: Fernandez F, et al. (2002) Expression and characterization of a human cDNA that complements the temperature-sensitive defect in dolichol kinase activity in the yeast sec59-1 mutant: the enzymatic phosphorylation of dolichol and diacylglycerol are catalyzed by separate CTP-mediated kinase activities in Saccharomyces cerevisiae. Glycobiology 12(9):555-62

Reference Help

Abstract


Dolichol kinase (DK) catalyzes the CTP-mediated phosphorylation of dolichol in eukaryotic cells, the terminal step in dolichyl monophosphate (Dol-P) biosynthesis de novo. In S. cerevisiae, the SEC59 gene encodes a protein essential for the expression of DK, an enzyme activity that is required for cell viability and normal rates of lipid intermediate synthesis and protein N-glycosylation. This study identifies a cDNA clone from human brain that encodes the mammalian homolog of DK (hDK1p). hDK1 is capable of complementing the growth defect, elevating DK activity, and consequently increasing Dol-P levels in vivo and restoring normal N-glycosylation of carboxypeptidase Y at the restrictive temperature in the temperature-sensitive mutant sec59-1. The CTP-mediated phosphorylation of diacylglycerol (DAG) is unaffected by either the temperature-sensitive mutation in the sec59-1 strain, overexpression of the SEC59 gene, or the mammalian homolog hDK1 under conditions that produced a loss or elevation in the level of DK activity. Additionally, overexpression of hDK1p in Sf-9 cells resulted in a 15-fold increase in DK activity but not DAG kinase activity in crude microsomal fractions. The cloned cDNA contains an open reading frame that would encode a protein with 538 amino acids and a molecular weight of 59,268 kDa. Consistent with this prediction, new polypeptides were detected with an apparent molecular weight of 59-60 kDa when His(6)-tagged constructs of hDK1 or the SEC59 gene were expressed in Sf-9 cells or the temperature-sensitive sec59-1 mutant cells, respectively. These results identify the first cDNA clone encoding a protein required for the expression of DK activity, possibly the catalytic subunit, in a mammalian cell, and establish that the phosphorylation of dolichol and DAG are catalyzed by separate kinase activities in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Fernandez F, Shridas P, Jiang S, Aebi M, Waechter CJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference