Reference: Kapteyn JC, et al. (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39(2):469-79

Reference Help

Abstract


Low environmental pH strongly affected the organization of the Saccharomyces cerevisiae cell wall, resulting in rapidly induced resistance to beta1,3-glucanase. At a molecular level, we found that a considerable amount of Cwp1p became anchored through a novel type of linkage for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins, namely an alkali-labile linkage to beta1,3-glucan. This novel type of modification for Cwp1p did not require the presence of a GPI-derived structure connecting the protein with beta1,6-glucan. In addition, we found high levels of Cwp1p, which was double-anchored through both the novel alkali-sensitive bond to beta1,3-glucan and the alkali-resistant GPI-derived linkage to beta1,6-glucan. Further cell wall analyses demonstrated that Pir2p/Hsp150 and possibly other Pir cell wall proteins, which were already known to be linked to the beta1,3-glucan framework by an alkali-sensitive linkage, were also more efficiently retained in the cell wall at pH 3.5 than at pH 5.5. Consequently, the alkali-sensitive type of linkage of cell wall proteins to beta1,3-glucan was induced by low pH. The low pH-induced alterations in yeast cell wall architecture were demonstrated to be dependent on a functional HOG1 gene, but not on the Slt2p-mediated MAP kinase pathway. Consistent with this observation, DNA microarray studies revealed transcriptional induction of many known high-osmolarity glycerol (HOG) pathway-dependent genes, including four cell wall-related genes, namely CWP1, HOR7, SPI1 and YGP1.

Reference Type
Journal Article
Authors
Kapteyn JC, ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H, Klis FM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference