Reference: Karlok MA, et al. (2002) Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization. J Biol Chem 277(31):28143-9

Reference Help

Abstract

The yeast mitochondrial RNA polymerase (RNAP) is a two-subunit enzyme composed of a catalytic core (Rpo41) and a specificity factor (Mtf1) encoded by nuclear genes. Neither subunit on its own interacts with promoter DNA, but the combined holo-RNAP recognizes and selectively initiates from promoters related to the consensus sequence ATATAAGTA. To pursue the question of why Rpo41, which resembles the single polypeptide RNAPs from bacteriophage T7 and T3, requires a separate specificity factor, we analyzed a collection of Mtf1 point mutations that confer an in vivo petite phenotype. These mutant proteins are able to interact with Rpo41 and are capable of nearly wild type levels of initiation in vitro with a consensus promoter-containing template (14 S rRNA). However, the petite phenotype of two mutants can be explained by the fact that they exhibit dramatic transcriptional defects on non-consensus promoters. Y54F is incapable of transcribing the weak tRNA(Cys) promoter, and C192F cannot transcribe either tRNA(Cys) or the variant COX2 promoter from linear DNA templates. Transcription of the tRNA(Cys) promoter by both mutants was significantly corrected by addition of an initiating dinucleotide primer or by supercoiling the DNA template. These results establish the critical role of Mtf1 in promoter recognition and initiation of transcription.

Reference Type
Journal Article
Authors
Karlok MA, Jang SH, Jaehning JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference