Reference: Yonkovich J, et al. (2002) Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. J Biol Chem 277(27):23981-4

Reference Help

Abstract


Copper ion uptake must be regulated to avoid both deficiency and excess because its essential yet toxic biological nature depends on the concentration. Yeast copper uptake is controlled at both the transcriptional and post-translational levels. The transcription of CTR1 and CTR3, encoding high affinity copper ion transporters, is regulated by the copper ion-sensing transcription factor Mac1p through the cis-acting copper ion-responsive elements in CTR1 and CTR3 promoters. Ctr1p is known to undergo degradation in cells exposed to high copper levels. We report that Mac1p is also required for copper-dependent Ctr1p degradation. Both mutations within a conserved copper ion binding motif, the "Cu-fist" in the Mac1p DNA-binding domain, and within a metal ion binding motif, REP-III located in the cytosolic domain of Ctr1p, cause defects in Ctr1p turnover. Furthermore, we show that the Mac1p limits intracellular copper accumulation likely by controlling Ctr1p degradation. The findings have uncovered an unprecedented mechanism by which a transcription factor not only regulates its target gene transcription but also controls the degradation of its target gene product.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yonkovich J, McKenndry R, Shi X, Zhu Z
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference