Reference: Walsh L, et al. (2002) DNA-damage induction of RAD54 can be regulated independently of the RAD9- and DDC1-dependent checkpoints that regulate RNR2. Curr Genet 41(4):232-40

Reference Help

Abstract


DNA damage checkpoints regulate a number of physiological responses after DNA damage. The transcriptional level of many genes is specifically induced in response to genotoxic stress in a checkpoint-dependent manner. The regulation of DNA damage-induced transcription of RAD54 and RNR2 by RAD9, DDC1, DUN1, CRT1 and MBP1 was investigated in Saccharomyces cerevisiae, using green fluorescent protein reporter assays and Northern blots. RAD54 and RNR2 reporter activity in response to the DNA damaging agent, methyl methanesulphonate, was measured in ddc1-Delta, rad9-Delta, ddc1-Delta/rad9-Delta, dun1-Delta, crt1-Delta and mbp1-Delta mutants and was compared with that of the wild type. RAD9 and DDC1 were shown to be required for a full RNR2 transcriptional response, although with the double mutant, ddc1-Delta/rad9-Delta, no additive effect on RNR2 induction was observed. RAD54 promoter activity was not significantly reduced in either rad9-Delta or ddc1-Delta mutants and was only partially reduced in the rad9-Delta/ddc1-Delta strain, suggesting that DNA damage induction of RAD54 must depend on other genes, in addition to RAD9 and DDC1. In the dun1-Delta mutant, RNR2 promoter activity was lowered, whilst that of RAD54 was increased, confirming that DUN1 is required for transcriptional induction of RNR2, but is not required for damage-induced transcription of RAD54. Analysis of the crt1-Delta strain confirmed that RNR2 is regulated via the CRT1 repressor pathway, downstream of DUN1, but RAD54 is not. MBP1 was shown to be required for transcription of RNR2, but was not needed for transcription of RAD54. These results indicate that RNR2 and RAD54 are regulated in different ways.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Walsh L, Schmuckli-Maurer J, Billinton N, Barker MG, Heyer WD, Walmsley RM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference