Reference: Stemmann O, et al. (2002) Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore. Proc Natl Acad Sci U S A 99(13):8585-90

Reference Help

Abstract


Binding of CBF3, a protein complex consisting of Ndc10p, Cep3p, Ctf13p, and Skp1p, to the centromere DNA nucleates kinetochore formation in budding yeast. Here, we investigate how the Ctf13p/Skp1p complex becomes competent to form the CBF3-centromere DNA complex. As revealed by mass spectrometry, Ctf13p and Skp1p carry two and four phosphate groups, respectively. Complete dephosphorylation of Ctf13p and Skp1p does not interfere with the formation of CBF3-centromere DNA complexes in vitro. Furthermore, deletion of corresponding phosphorylation sites results in viable cells. Thus, in contrast to the current view, phosphorylation of Ctf13p and Skp1p is not essential for the formation of CBF3-centromere DNA complexes. Instead, the formation of active Ctf13p/Skp1p requires Hsp90. Several lines of evidence support this conclusion: activation of heterologous Ctf13p/Skp1p by reticulocyte lysate is inhibited by geldanamycin and Hsp90 depletion. skp1 mutants exhibit growth defects on media containing geldanamycin. A skp1 mutation together with Hsp90 mutations exhibits synthetic lethality. An Hsp90 mutant contains decreased levels of active Ctf13p/Skp1p.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Stemmann O, Neidig A, Kocher T, Wilm M, Lechner J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference