Reference: Mizumura H, et al. (2002) Association of HSP70 with endonucleases allows the expression of otherwise silent mutations. FEBS Lett 522(1-3):177-82

Reference Help

Abstract


A subpopulation of the 70 kDa heat shock protein (HSP70) found within the mitochondria of Saccharomyces cerevisiae functions as a stable binding partner of the endonuclease SceI. We have previously found that the SceI endonuclease monomer recognizes and cleaves a unique, 26 bp sequence in vitro. Dimerization with HSP70 changes the specificity of SceI, allowing it to cleave at multiple sequences. This study shows that SuvI, an ortholog of SceI isolated from a different yeast strain, contains two amino acid substitutions, yet it shows the same uni-site specificity in its monomeric form. Binding of HSP70 to the SuvI monomer confers multi-site specificity that is different from that exhibited by the HSP70/SceI heterodimer. Mutation of single residues of SceI to the corresponding residue in SuvI provides enzymes with specificities intermediate between SceI and SuvI when complexed with HSP70. These results suggest that HSP70 interaction with certain endonucleases allows the expression of otherwise silent mutations in them, causing a change in enzyme cleavage specificity.

Reference Type
Journal Article
Authors
Mizumura H, Shibata T, Morishima N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference