Take our Survey

Reference: Lucero HA, et al. (2002) A nonradioactive, high throughput assay for chitin synthase activity. Anal Biochem 305(1):97-105

Reference Help

Abstract


Wheat germ agglutinin (WGA) binds with high affinity and specificity to several sites on chitin polymers. Based on these properties we have modified and adapted a previously patented (U.S. patent 5,888,757) nonradioactive, high throughput screening assay for antimicrobial agents, making it suitable as a quantitative enzymatic assay for the activity of individual chitin synthase isozymes in yeast. The procedure involves binding of synthesized chitin to a WGA-coated surface followed by detection of the polymer with a horseradish peroxidase-WGA conjugate. Horseradish peroxidase activity is then determined as an increment in absorbance at 600 nm. Absorbance values are converted to amounts of chitin using acid-solubilized chitin as a standard. The high sensitivity (lower limit of detection about 50 ng chitin), low dispersion (lower than 10%), and high throughput (96-well microtiter plate format) make this assay an excellent substitute for the conventional radioactive chitin synthase assay in cell-free extracts. We have applied this method to the differential assay of chitin synthase activities (Chs1, Chs2, and Chs3) in cell-free extracts of Saccharomyces cerevisiae. Analysis of Chs3 activity in chitosomal and plasma membrane fractions revealed that Chs3 in the plasma membrane fraction is about sixfold more active than in the chitosome.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Lucero HA, Kuranda MJ, Bulik DA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference