Take our Survey

Reference: Shenton D, et al. (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem 277(19):16853-9

Reference Help

Abstract


The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein -SH groups form mixed disulfides with low molecular weight thiols such as glutathione. We report here that this protein modification is not a simple response to the cellular redox state, since different oxidants lead to different patterns of protein S-thiolation. SDS-polyacrylamide gel electrophoresis shows that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the major target for modification following treatment with hydroperoxides (hydrogen peroxide or tert-butylhydroperoxide), whereas this enzyme is unaffected following cellular exposure to the thiol oxidant diamide. Further evidence that protein S-thiolation is tightly regulated in response to oxidative stress is provided by the finding that the Tdh3 GAPDH isoenzyme, and not the Tdh2 isoenzyme, is S-thiolated following exposure to H(2)O(2) in vivo, whereas both GAPDH isoenzymes are S-thiolated when H(2)O(2) is added to cell-free extracts. This indicates that cellular factors are likely to be responsible for the difference in GAPDH S-thiolation observed in vivo rather than intrinsic structural differences between the GAPDH isoenzymes. To begin to search for factors that can regulate the S-thiolation process, we investigated the role of the glutaredoxin family of oxidoreductases. We provide the first evidence that protein dethiolation in vivo is regulated by a monothiol-glutaredoxin rather than the classical glutaredoxins, which contain two active site cysteine residues. In particular, glutaredoxin 5 is required for efficient dethiolation of the Tdh3 GAPDH isoenzyme.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference