Reference: Sidorova JM and Breeden LL (2002) Precocious S-phase entry in budding yeast prolongs replicative state and increases dependence upon Rad53 for viability. Genetics 160(1):123-36

Reference Help

Abstract


Precocious entry into S phase due to overproduction of G1 regulators can cause genomic instability. The mechanisms of this phenomenon are largely unknown. We explored the consequences of precocious S phase in yeast by overproducing a deregulated form of Swi4 (Swi4-t). Swi4 is a late G1-specific transcriptional activator that, in complex with Swi6, binds to SCB elements and activates late G1-specific genes, including G1 cyclins. We find that wild-type cells tolerate Swi4-t, whereas checkpoint-deficient rad53-11 cells lose viability within several divisions when Swi4-t is overproduced. Rad53 kinase activity is increased in cells overproducing Swi4-t, indicating activation of the checkpoint. We monitored the transition from G1 to S in cells with Swi4-t and found that there is precocious S-phase entry and that the length of S phase is extended. Moreover, there were more replication intermediates, and firing of at least a subset of origins may have been more extensive in the cells expressing Swi4-t. Our working hypothesis is that Rad53 modulates origin firing based upon growth conditions to optimize the rate of S-phase progression without adversely affecting fidelity. This regulation becomes essential when S phase is influenced by Swi4-t.

Reference Type
Authors
Sidorova JM, Breeden LL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference