Take our Survey

Reference: Donalies UE and Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19(6):475-84

Reference Help

Abstract


Saccharomyces cerevisiae produces sulphite as an intermediate product during the assimilatory reduction of sulphate to sulphide. Three genes, MET3, MET14 and MET16, are essential for this reduction. We investigated the level of transcription of these genes in strains of S. cerevisiae with high, medium and low sulphite formation. The level of MET14- and MET16-mRNA varied with sulphite production, whereas the level of MET3-mRNA was very weak in almost all strains. We also analysed the effect of overexpression of MET14 and MET16 on sulphite formation. Two strains with low sulphite production were transformed with high-copy plasmids containing either or both MET14 and MET16. The overexpression of these two genes leads to a two- to three-fold sulphite formation. In addition, inactivation of MET10, encoding a subunit of the sulphite reductase, also leads to a distinct increase in sulphite formation; however, the cells became methionine auxotroph. The overexpression of SSU1, a gene encoding a putative sulphite pump, yields a slight increase in sulphite accumulation, whereas overexpression of SSU1, together with MET14, increases sulphite formation up to 10-fold. Furthermore, sulphite formation strongly depends on growth conditions, e.g. yeast transformants growing in wort produce much higher amounts of sulphite when compared to growth in minimal media. The addition of glucose can also increase the sulphite formation in strains overexpressing MET14 and/or SSU1 under oxygen-limiting conditions, while the addition of glucose has no significant effect under aerobic conditions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Donalies UE, Stahl U
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference