Take our Survey

Reference: Holland MJ (2002) Transcript abundance in yeast varies over six orders of magnitude. J Biol Chem 277(17):14363-6

Reference Help

Abstract

In the current era of functional genomics, it is remarkable that the intracellular range of transcript abundance is largely unknown. For the yeast Saccharomyces cerevisiae, hybridization-based complexity analysis and SAGE analysis showed that the majority of yeast mRNAs are present at one or fewer copies per cell; however, neither method provides an accurate estimate of the full range of low abundance transcripts. Here we examine the range of intracellular transcript abundance in yeast using kinetically monitored, reverse transcriptase-initiated PCR (kRT-PCR). Steady-state transcript levels encoded by all 65 genes on the left arm of chromosome III and 185 transcription factor genes are quantitated. Abundant transcripts encoded by glycolytic genes, previously quantitated by kRT-PCR, are present at a few hundred copies per cell whereas genes encoding physiologically important transcription factors are expressed at levels as low as one-thousandth transcript per cell. Of the genes assessed, only the silent mating type loci, HML and HMR, are transcriptionally silent. The results show that transcript abundance in yeast varies over six orders of magnitude. Finally, kRT-PCR, cDNA microarray, and high density oligonucleotide array assays are compared for their ability to detect and quantitate the complete yeast transcriptome.

Reference Type
Journal Article
Authors
Holland MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference