Reference: Baxa U, et al. (2002) Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci U S A 99(8):5253-60

Reference Help

Abstract


The [URE3] infectious protein (prion) of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The C-terminal domain of Ure2p controls nitrogen catabolism by complexing with the transcription factor, Gln3p, whereas the asparagine-rich N-terminal "prion" domain is responsible for amyloid filament formation (prion conversion). On filament formation, Ure2p is inactivated, reflecting either a structural change in the C-terminal domain or steric blocking of its interaction with Gln3p. We fused the prion domain with four proteins whose activities should not be sterically impeded by aggregation because their substrates are very small: barnase, carbonic anhydrase, glutathione S-transferase, and green fluorescent protein. All formed amyloid filaments in vitro, whose diameters increased with the mass of the appended enzyme. The helical repeat lengths were consistent within a single filament but varied with the construct and between filaments from a single construct. CD data suggest that, in the soluble fusion proteins, the prion domain has no regular secondary structure, whereas earlier data showed that in filaments, it is virtually all beta-sheet. In filaments, the activity of the appended proteins was at most mildly reduced, when substrate diffusion effects were taken into account, indicating that they retained their native structures. These observations suggest that the amyloid content of these filaments is confined to their prion domain-containing backbones and imply that Ure2p is inactivated in [URE3] cells by a steric blocking mechanism.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Baxa U, Speransky V, Steven AC, Wickner RB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference