Reference: Seiboth B, et al. (2002) Lactose metabolism and cellulase production in Hypocrea jecorina: the gal7 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction. Mol Genet Genomics 267(1):124-32

Reference Help

Abstract


Lactose is at present the only soluble carbon source which can be used economically for the production by Hypocrea jecorina (= Trichoderma reesei) of cellulases or heterologous proteins under the control of cellulase expression signals. However, the mechanism by which lactose triggers the formation of cellulases is unknown. To enhance our understanding of lactose metabolism and its relationship to cellulase formation, we have cloned and characterized the gal7 gene (for galactose-1-phosphate uridylyltransferase) of H. jecorina. The gene encodes a polypeptide of 43.8 kDa, the sequence of which exhibits a moderate level of identity (about 50%) to that of the Gal7 proteins of Saccharomyces cerevisiae and Kluyveromyces lactis, and contains an active-site signature typical for galactose-1-phosphate uridylyltransferase family 1. H. jecorina gal7 is not clustered with other genes of galactose metabolism. A single 1.7-kb transcript is synthesized constitutively during the rapid growth phase and accumulated to twice this level during incubation in the presence of D-galactose and L-arabinose and the corresponding polyols (dulcitol, arabitol). A gal7 deletion mutant, constructed by replacing the gal7 reading frame by the H. jecorina pyr4 gene, was unable to grow on D-galactose between pH 4.5 and 7.5, thus proving that in H. jecorina gal7 is essential for metabolism of D-galactose, whereas the growth rate of the mutant on lactose was only reduced by about 50%. The rate of formation of cellobiohydrolase Cel7A and the abundance of the corresponding (cbh1) transcript during growth on lactose was only slightly lower in the absence of gal7, but a significant delay in decay of the cbh1 transcript was noted during later stages of growth. The results suggest that H. jecorina uses only the Leloir pathway for metabolism of D-galactose and lactose. Furthermore, we conclude that metabolism of lactose past the galactose-1-phosphate step is not essential for cellulase formation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Seiboth B, Hofmann G, Kubicek CP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference