Reference: Garrido EO and Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43(4):993-1003

Reference Help

Abstract


Glutaredoxins and thioredoxins are highly conserved, small, heat-stable oxidoreductases. The yeast Saccharomyces cerevisiae contains two gene pairs encoding cytoplasmic glutaredoxins (GRX1, GRX2) and thioredoxins (TRX1, TRX2), and we have used multiple mutants to determine their roles in mediating resistance to oxidative stress caused by hydroperoxides. Our data indicate that TRX2 plays the predominant role, as mutants lacking TRX2 are hypersensitive, and mutants containing TRX2 are resistant to these oxidants. However, the requirement for TRX2 is only apparent during stationary phase growth, and we present three lines of evidence that the thioredoxin isoenzymes actually have redundant activities as antioxidants. First, the trx1 and trx2 mutants show wild-type resistance to hydroperoxide during exponential phase growth; secondly, overexpression of either TRX1 or TRX2 leads to increased resistance to hydroperoxides; and, thirdly, both Trx1 and Trx2 are equally able to act as cofactors for the thioredoxin peroxidase, Tsa1. The antioxidant activity of thioredoxins is required for both the survival of yeast cells as well as protection against oxidative stress during stationary phase growth, and correlates with an increase in the expression of both TRX1 and TRX2. We show that the requirement for thioredoxins during this growth phase is dependent on their activity as cofactors for the antioxidant enzyme Tsa1, and for regulation of the redox state and protein-bound levels of the low-molecular-weight antioxidant glutathione.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Garrido EO, Grant CM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference