Take our Survey

Reference: Di Mauro E, et al. (2002) In vivo changes of nucleosome positioning in the pretranscription state. J Biol Chem 277(9):7002-9

Reference Help

Abstract


The involvement of chromatin structure and organization in transcriptional regulatory pathways has become evident. One unsolved question concerns the molecular mechanisms of chromatin remodeling during in vivo promoter activation. By using a high resolution in vivo analysis we show that when yeast cells are exposed to a regulatory signal the positions of specific nucleosomes change. The system analyzed consists of the basic elements of the Saccharomyces cerevisiae ADH2 promoter, two nucleosomes of which are shown to change the distribution of their positions by few nucleotides in the direction of transcription when the glucose content of the medium is lowered. Such repositioning does not occur in the absence of the ADH2 transcriptional activator Adr1 or in the presence of its DNA-binding domain alone. A construct consisting of the DNA-binding domain plus a 43-amino acid peptide containing the Adr1 activation domain is sufficient to induce the same effect of the full-length protein. Nucleosome repositioning occurs even when the catalytic activity of the RNA polymerase II is impaired, suggesting that the Adr1 activation domain mediates the recruitment of some factor to correctly preset the relevant sequences for the subsequent transcription steps.

Reference Type
Journal Article
Authors
Di Mauro E, Verdone L, Chiappini B, Caserta M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference