Take our Survey

Reference: Awasthi S, et al. (2001) New roles for the Snp1 and Exo84 proteins in yeast pre-mRNA splicing. J Biol Chem 276(33):31004-15

Reference Help

Abstract


The mammalian 70K protein, a component of the U1 small nuclear ribonucleoprotein involved in pre-mRNA splicing, interacts with a number of proteins important for regulating constitutive and alternative splicing. Similar proteins that interact with the yeast homolog of the 70K protein, Snp1p, have yet to be identified. We used the two-hybrid system to find four U1-Snp1 associating (Usa) proteins. Two of these proteins physically associate with Snp1p as assayed by coimmunoprecipitation. One is Prp8p, a known, essential spliceosomal component. This interaction suggests some novel functions for Snp1p and the U1 small nuclear ribonucleoprotein late in spliceosome development. The other, Exo84p, is a conserved subunit of the exocyst, an eight-protein complex functioning in secretion. We show here that Exo84p is also involved in pre-mRNA splicing. A temperature-sensitive exo84 mutation caused increased ratios of pre-mRNA to mRNA for the Rpl30 and actin transcripts in cells incubated at the non-permissive temperature. The mutation also led to a defect in splicing and prespliceosome formation in vitro; an indication that Exo84p has a direct role in splicing. The results elucidate a surprising link between splicing and secretion.

Reference Type
Journal Article
Authors
Awasthi S, Palmer R, Castro M, Mobarak CD, Ruby SW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference