Reference: Machingo Q, et al. (2001) Second-site, intragenic alterations in the gene encoding subunit II of cytochrome c oxidase from yeast can suppress two different missense mutations. Curr Genet 39(5-6):297-304

Reference Help

Abstract


Cytochrome c oxidase, a multi-subunit enzyme complex, accepts electrons from cytochrome c and transfers them to molecular oxygen to form water. Subunit II (Cox2p) of the enzyme complex provides the initial entry site for the electrons from cytochrome c. We report here the characterization of a yeast strain bearing a mutation in the gene encoding Cox2p which abolishes the activity of the enzyme complex. The alteration, at residue 163 in the yeast polypeptide, substitutes isoleucine for threonine and leads to loss of Cox2p and loss of the ability to carry out cellular respiration. We have also characterized 55 independent revertants of the mutant which have recovered the ability to respire. Of these revertants, 37 recover the ability to respire due to a compensatory alteration at residue 163, which produces either a wild-type threonine codon or one for valine or serine. The other 18 revertants recover function due to secondary changes at four different codons within the gene encoding Cox2p. Some of these second-site, intragenic revertants occur at sites significantly distant from the position of the original mutation. In addition, alterations at two of these sites have previously been shown to suppress a completely different missense mutation in the gene.

Reference Type
Journal Article
Authors
Machingo Q, Mazourek M, Cameron V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference