Reference: Schaber M, et al. (2002) CAK1 promotes meiosis and spore formation in Saccharomyces cerevisiae in a CDC28-independent fashion. Mol Cell Biol 22(1):57-68

Reference Help

Abstract


CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Schaber M, Lindgren A, Schindler K, Bungard D, Kaldis P, Winter E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference