Take our Survey

Reference: Paschen SA and Neupert W (2001) Protein import into mitochondria. IUBMB Life 52(3-5):101-12

Reference Help

Abstract


Most mitochondrial proteins are encoded by the nuclear genome and thus have to be imported into mitochondria from the cytosol. Protein translocation across and into the mitochondrial membranes is a multistep process facilitated by the coordinated action of at least four specialized translocation systems in the outer and inner membranes of mitochondria. The outer membrane contains one general translocase, the TOM complex, whereas three distinct translocases are located in the inner membrane, which facilitates translocation of different classes of preproteins. The TIM23 complex mediates import of matrix-targeted preproteins with N-terminal presequences, whereas hydrophobic preproteins with internal targeting signals are inserted into the inner membrane via the TIM22 complex. The OXA translocase mediates the insertion of preproteins from the matrix space into the inner membrane. This review focuses on the structural organization and function of the import machinery of the model organisms of Saccharomyces cerevisiae and Neurospora crassa. In addition, the molecular basis of a new human mitochondrial disorder is discussed, the Mohr-Tranebjaerg syndrome. This is the first known disease, which is caused by an impaired mitochondrial protein import machinery leading to progressive neurodegeneration.

Reference Type
Journal Article
Authors
Paschen SA, Neupert W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference