Take our Survey

Reference: Zhang CJ, et al. (2003) Four ARF GAPs in Saccharomyces cerevisiae have both overlapping and distinct functions. Yeast 20(4):315-30

Reference Help

Abstract

Previous studies in yeast have revealed the presence of four proteins with a conserved, cysteine-rich, ARF GAP domain that share the ability to suppress the conditional growth defect of the arf1-3 mutant. Three of these proteins have been shown previously to be ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs). We now demonstrate that the fourth also exhibits in vitro ARF GAP activity and correlates the suppressor and ARF GAP activities for all four. Because the four ARF GAP proteins are quite diverse outside the ARF GAP domain, a genetic analysis was undertaken to define the level of functional cross-talk between them. A large number of synthetic defects were observed that point to a high degree of functional overlap among the four ARF GAPs. However, several differences were also noted in the ability of each gene to suppress the synthetic defects of others and in the impact of single or combined deletions on assays of membrane traffic. We interpret these results as supportive evidence for roles of ARF GAPs in a number of distinct, essential cellular processes that include cell growth, protein secretion, endocytosis and cell cycling. The description of the specificities of the ARF GAPs for the different responses is viewed as a necessary first step in dissecting biologically relevant pathways through a functionally overlapping family of signalling proteins.CI - Copyright 2003 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Zhang CJ, Bowzard JB, Anido A, Kahn RA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference