Reference: Yan BC, et al. (2001) Ynl038wp (Gpi15p) is the Saccharomyces cerevisiae homologue of human Pig-Hp and participates in the first step in glycosylphosphatidylinositol assembly. Yeast 18(15):1383-9

Reference Help

Abstract

Glycosylphosphatidylinositols (GPIs) are found in all eukaryotes and are synthesized in a pathway that starts with the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI). This reaction is carried out by a protein complex, three of whose subunits in humans, hGpi1p, Pig-Cp and Pig-Ap, have sequence and functional homologues in the Saccharomyces cerevisiae Gpi1, Gpi2 and Gpi3 proteins, respectively. Human GlcNAc-PI synthase contains two further subunits, Pig-Hp and PigPp. We report that the essential YNL038w gene encodes the S. cerevisiae homologue of Pig-Hp. Haploid YNL038w-deletion strains were created, in which Ynl038wp could be depleted by repressing YNL038w expression using the GAL10 promoter. Depletion of Ynl038wp from membranes virtually abolished in vitro GlcNAc-PI synthetic activity, indicating that Ynl038wp is necessary for GlcNAc-PI synthesis in vitro. Further, depletion of Ynl038wp in an smp3 mutant background prevented the formation of the trimannosylated GPI intermediates that normally accumulate in this late-stage GPI assembly mutant. Ynl038wp is therefore required for GPI synthesis in vivo. Because YNL038w encodes a protein involved in GPI biosynthesis, we designate the gene GPI15. Potential Pig-Hp/Gpi15p counterparts are also encoded in the genomes of Schizosacchomyces pombe and Candida albicans.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Yan BC, Westfall BA, Orlean P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference