Reference: Brusca EM, et al. (2001) Novel RNA-binding properties of Pop3p support a role for eukaryotic RNase P protein subunits in substrate recognition. J Biol Chem 276(45):42543-8

Reference Help

Abstract

Ribonuclease P (RNase P) catalyzes the 5'-end maturation of transfer RNA molecules. Recent evidence suggests that the eukaryotic protein subunits may provide substrate-binding functions (True, H. L., and Celander, D. W. (1998) J. Biol. Chem. 273, 7193-7196). We now report that Pop3p, an essential protein subunit of the holoenzyme in Saccharomyces cerevisiae, displays novel RNA-binding properties. A recombinant form of Pop3p (H6Pop3p) displays a 3-fold greater affinity for binding pre-tRNA substrates relative to tRNA products. The recognition sequence for the H6Pop3p-substrate interaction in vitro was mapped to a 39-nucleotide long sequence that extends from position -21 to +18 surrounding the natural processing site in pre-tRNA substrates. H6Pop3p binds a variety of RNA molecules with high affinity (K(d) = 16-25 nm) and displays a preference for single-stranded RNAs. Removal or modification of basic C-terminal residues attenuates the RNA-binding properties displayed by the protein specifically for a pre-tRNA substrate. These studies support the model that eukaryotic RNase P proteins bind simultaneously to the RNA subunit and RNA substrate.

Reference Type
Journal Article
Authors
Brusca EM, True HL, Celander DW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference