Reference: Boubekeur S, et al. (2001) Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae. Eur J Biochem 268(19):5057-65

Reference Help

Abstract


This work was undertaken to clarify the role of acetaldehyde dehydrogenases in Saccharomyces cerevisiae metabolism during growth on respiratory substrates. Until now, there has been little agreement concerning the ability of mutants deleted in gene ALD4, encoding mitochondrial acetaldehyde dehydrogenase, to grow on ethanol. Therefore we constructed mutants in two parental strains (YPH499 and W303-1a). Some differences appeared in the growth characteristics of mutants obtained from these two parental strains. For these experiments we used ethanol, pyruvate or lactate as substrates. Mitochondria can oxidize lactate into pyruvate using an ATP synthesis-coupled pathway. The ald4Delta mutant derived from the YPH499 strain failed to grow on ethanol, but growth was possible for the ald4Delta mutant derived from the W303-1a strain. The co-disruption of ALD4 and PDA1 (encoding subunit E1alpha of pyruvate dehydrogenase) prevented the growth on pyruvate for both strains but prevented growth on lactate only in the double mutant derived from the YPH499 strain, indicating that the mutation effects are strain-dependent. To understand these differences, we measured the enzyme content of these different strains. We found the following: (a) the activity of cytosolic acetaldehyde dehydrogenase in YPH499 was relatively low compared to the W303-1a strain; (b) it was possible to restore the growth of the mutant derived from YPH499 either by addition of acetate in the media or by introduction into this mutant of a multicopy plasmid carrying the ALD6 gene encoding cytosolic acetaldehyde dehydrogenase. Therefore, the lack of growth of the mutant derived from the YPH499 strain seemed to be related to the low activity of acetaldehyde oxidation. Therefore, when cultured on ethanol, the cytosolic acetaldehyde dehydrogenase can partially compensate for the lack of mitochondrial acetaldehyde dehydrogenase only when the activity of the cytosolic enzyme is sufficient. However, when cultured on pyruvate and in the absence of pyruvate dehydrogenase, the cytosolic acetaldehyde dehydrogenase cannot compensate for the lack of the mitochondrial enzyme because the mitochondrial form produces intramitochondrial NADH and consequently ATP through oxidative phosphorylation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Boubekeur S, Camougrand N, Bunoust O, Rigoulet M, Guérin B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference